150 JEE Main Maths MCQs on Calculus – Step- by-Step Solutions (Free PDF)
Boost Your JEE Main Preparation with 150 Calculus MCQs – Free PDF with Detailed Solutions
Prepare smarter for JEE Main Maths with our handpicked collection of 150 Calculus MCQs covering all key topics like Limits, Continuity, Differentiability, Integration, and Application of Derivatives. This resource includes step-by-step solutions to help you learn concepts, identify shortcuts, and avoid common mistakes. Perfect for last-minute revision or daily practice. Download the free PDF and strengthen your grip on Calculus – one of the most scoring topics in JEE Mathematics.
Keywords: JEE Main Calculus MCQs, JEE Maths MCQs PDF, JEE Main Mathematics practice questions, Calculus questions for JEE, JEE Main solved MCQs, free JEE Maths PDF, JEE 2025 preparation, step-by-step JEE solutions, important JEE Maths topics, cotinew
🔹 Limits and Continuity (20 MCQs)
Limits & Continuity (20 MCQs)
-
limₓ→0 (sin x)/x =
A) 0 B) 1 C) ∞ D) Does not exist
Ans: B -
limₓ→∞ (1 + 1/x)^x =
A) 0 B) 1 C) e D) ∞
Ans: C -
limₓ→0 (1 - cos x)/x² =
A) 1 B) ½ C) 0 D) Does not exist
Ans: B -
limₓ→0 (tan x - x)/x³ =
A) 0 B) 1/3 C) 1 D) 1/6
Ans: D -
limₓ→π/2⁻ tan x =
A) 0 B) 1 C) ∞ D) -∞
Ans: ∞ -
limₓ→0 (e^x - 1)/x =
A) 1 B) e C) 0 D) ∞
Ans: A -
If f(x) = |x|, then f(x) is
A) Continuous everywhere B) Discontinuous at x = 0
C) Differentiable everywhere D) None
Ans: A -
limₓ→0 (sin 3x)/(x) =
A) 0 B) 3 C) 1 D) Does not exist
Ans: B -
f(x) = { x², x < 1 ; 2x - 1, x ≥ 1 } is continuous at x = 1?
A) Yes B) No
Ans: A -
limₓ→a (x^n - a^n)/(x - a) =
A) aⁿ⁻¹ B) naⁿ⁻¹ C) n D) a
Ans: B -
limₓ→0 (ln(1 + x))/x =
A) 1 B) 0 C) e D) ∞
Ans: A -
limₓ→0 (1 - cos 2x)/x² =
A) 2 B) 1 C) 4 D) None
Ans: C -
Function f(x) = |x - 2| is continuous at x = 2?
A) Yes B) No
Ans: A -
limₓ→1 (x³ - 1)/(x - 1) =
A) 1 B) 2 C) 3 D) None
Ans: C -
limₓ→∞ (ln x)/x =
A) 0 B) ∞ C) 1 D) e
Ans: A -
limₓ→0 (1 - cos x)/x =
A) 1 B) 0 C) ∞ D) Does not exist
Ans: B -
limₓ→a (√x - √a)/(x - a) =
A) 0 B) 1 C) 1/(2√a) D) ∞
Ans: C -
limₓ→0 sin x / (1 - cos x) =
A) ∞ B) 0 C) Does not exist D) Undefined
Ans: A -
f(x) = { sin x / x if x ≠ 0, 1 if x = 0 } is continuous at x = 0?
A) Yes B) No
Ans: A -
limₓ→∞ (x + sin x)/x =
A) 1 B) 0 C) ∞ D) Does not exist
Ans: A
🔹 Differentiability (21–30)
-
If f(x) = |x|, then f(x) is differentiable at x = 0?
A) Yes B) No C) Only right diff D) Only left diff
Ans: B -
f(x) = |x – 3| + |x + 3| is differentiable at x = 0?
A) Yes B) No C) Continuous but not differentiable D) None
Ans: C -
Which function is not differentiable at x = 0?
A) x² B) |x| C) sin x D) e^x
Ans: B -
f(x) = x⁴ is differentiable at x = 0?
A) No B) Only right diff C) Yes D) Discontinuous
Ans: C -
f(x) = |x – 1| + |x – 2| is not differentiable at
A) x = 1 B) x = 1, 2 C) x = 2 D) None
Ans: B -
If f(x) = max(x, –x), then f′(0) is
A) Does not exist B) 0 C) 1 D) –1
Ans: A -
Differentiability implies
A) Continuity only B) Not always continuity
C) Continuity + left & right derivatives equal D) None
Ans: C -
Derivative of f(x) = |x³| is defined at x = 0?
A) Yes B) No C) Only right diff D) Only left diff
Ans: A -
Function f(x) = |sin x| is not differentiable at
A) π/2 B) π C) 0 D) All multiples of π
Ans: D -
Derivative of |x – 2| at x = 2 is
A) 1 B) –1 C) Not defined D) 0
Ans: C
🔹 Applications of Derivatives (31–60)
-
If y = x³, then dy/dx at x = 2 is
A) 2 B) 4 C) 12 D) 6
Ans: C -
Derivative of sin x² is
A) cos x² B) 2x cos x C) 2x cos x² D) None
Ans: C -
Slope of tangent to y = x² at x = 1 is
A) 0 B) 2 C) 1 D) 4
Ans: B -
Maximum value of –x² + 4x + 5 is at x =
A) 2 B) –2 C) 0 D) 5
Ans: A -
If f′(x) > 0 for all x, then f is
A) Decreasing B) Constant C) Increasing D) None
Ans: C -
If f′(x) = 0, f″(x) < 0, then
A) Minima B) Inflection C) Maxima D) Saddle point
Ans: C -
Slope of normal to y = x² at x = 1 is
A) –1 B) –½ C) –2 D) 1
Ans: C -
If y = tan⁻¹x, then dy/dx =
A) 1/(1 + x²) B) 1/(1 – x²) C) x/(1 + x²) D) None
Ans: A -
Function f(x) = x³ – 3x has max at
A) x = 1 B) x = 0 C) x = –1 D) x = ±1
Ans: D -
If f″(a) = 0, then a is
A) Maxima B) Minima C) Not necessarily max/min D) Inflection
Ans: C
🔹 Applications of Derivatives (AOD) Continued (41–60)
-
Minimum value of x² + 1 is at x =
A) 0 B) 1 C) –1 D) ∞
Ans: A -
If y = ln(sin x), then dy/dx =
A) cos x B) cot x C) –cot x D) 1/x
Ans: B -
If f(x) = e^x sin x, then f′(x) =
A) e^x cos x B) e^x(sin x + cos x) C) e^x(sin x – cos x) D) None
Ans: B -
If f(x) = log x, then f′(x) =
A) x B) 1/x C) ln x D) e^x
Ans: B -
Slope of tangent to curve y = x³ – x at x = 1 is
A) 0 B) 2 C) 1 D) 3
Ans: A -
f(x) = x³ – 6x² + 9x has min value at
A) x = 1 B) x = 3 C) x = 0 D) x = 2
Ans: B -
y = √(1 + x²), dy/dx =
A) x/√(1 + x²) B) 1/(2√x) C) 1 D) √(1 + x²)
Ans: A -
If f(x) = tan x, then f′(x) =
A) sec x B) sec²x C) cot x D) tan²x
Ans: B -
Point on y = x² closest to origin is
A) (0, 0) B) (1, 1) C) (2, 4) D) (1/2, 1/4)
Ans: A -
Rate of change of area of circle w.r.t radius is
A) π B) 2πr C) πr² D) None
Ans: B -
If f(x) = sin⁻¹x, then f′(x) =
A) 1/√(1 – x²) B) √(1 – x²) C) x/√(1 – x²) D) None
Ans: A -
Maxima of f(x) = –x² + 6x – 8 is at x =
A) 2 B) 3 C) 1 D) 4
Ans: B -
f(x) = x⁴ – 2x² has local minima at
A) x = 0 B) x = ±1 C) x = ±2 D) x = 1
Ans: B -
Derivative of sec x is
A) sec x tan x B) –sec x tan x C) sec²x D) None
Ans: A -
f(x) = x⁵ is
A) Increasing everywhere B) Decreasing everywhere C) Constant D) None
Ans: A -
If f′(x) = 0 ∀ x ∈ ℝ, then f is
A) Increasing B) Decreasing C) Constant D) None
Ans: C -
f(x) = x³ – 3x² – 9x + 27 has
A) 1 max, 1 min B) 2 max C) 2 min D) None
Ans: A -
d/dx of log₁₀x is
A) 1/x B) 1/(x ln10) C) ln x D) x ln10
Ans: B -
Max value of sin x + cos x is
A) √2 B) 1 C) 2 D) 0
Ans: A -
Slope of curve y = ln x at x = 1 is
A) 1 B) 0 C) ∞ D) e
Ans: A
🔹 Indefinite Integration (61–90)
-
∫x dx =
A) x² B) x²/2 + C C) 1/x + C D) None
Ans: B -
∫cos x dx =
A) sin x + C B) –sin x + C C) tan x + C D) None
Ans: A -
∫(1/x) dx =
A) x²/2 B) ln|x| + C C) 1/x + C D) None
Ans: B -
∫e^x dx =
A) e^x + C B) ln x + C C) x e^x D) None
Ans: A -
∫sec²x dx =
A) tan x + C B) sec x + C C) –tan x + C D) None
Ans: A -
∫1/(1 + x²) dx =
A) ln|x| + C B) tan⁻¹x + C C) sin⁻¹x + C D) None
Ans: B -
∫1/√(1 – x²) dx =
A) sin⁻¹x + C B) cos⁻¹x + C C) tan⁻¹x + C D) None
Ans: A -
∫x e^x dx =
A) x e^x – ∫e^x dx B) x e^x – e^x + C C) e^x D) None
Ans: B -
∫ln x dx =
A) x ln x – x + C B) ln x + C C) 1/x + C D) None
Ans: A -
∫tan x dx =
A) ln|sec x| + C B) sec x + C C) tan x + C D) None
Ans: A
🔹 Indefinite Integration (71–90)
-
∫x³ dx =
A) x⁴ + C B) x⁴/4 + C C) 3x² + C D) None
Ans: B -
∫sec x dx =
A) ln|sec x + tan x| + C B) tan x + C C) sec x tan x + C D) None
Ans: A -
∫1/(1 – x²) dx =
A) tan⁻¹x + C B) sinh⁻¹x + C C) (1/2) ln|(1 + x)/(1 – x)| + C D) None
Ans: C -
∫x² e^x dx =
A) (x² – 2x + 2)e^x + C B) e^x + x² + C C) x e^x – e^x + C D) None
Ans: A -
∫(cos x)/(1 + sin x) dx =
A) 2 tan⁻¹(√[(1 – sin x)/(1 + sin x)]) + C B) log|1 + sin x| + C
C) sin x + C D) None
Ans: B -
∫(1 + tan²x) dx =
A) sec x + C B) tan x + C C) x + tan x + C D) tan⁻¹x + C
Ans: C -
∫sin 2x dx =
A) –½ cos 2x + C B) cos 2x + C C) –cos x + C D) None
Ans: A -
∫1/(x² + a²) dx =
A) (1/a) tan⁻¹(x/a) + C B) ln|x + a| + C C) x/(x² + a²) + C D) None
Ans: A -
∫x/(x² + 1) dx =
A) x² + C B) ln(x² + 1) + C C) ½ ln(x² + 1) + C D) tan⁻¹x + C
Ans: C -
∫x/(√(1 + x²)) dx =
A) √(1 + x²) + C B) ln|x| + C C) tan⁻¹x + C D) None
Ans: A -
∫sin³x dx =
A) (–cos x)(1 – sin²x)/3 + C B) –cos x + C C) –sin x + C D) None
Ans: A -
∫e^(2x) dx =
A) e^(2x)/2 + C B) 2e^x + C C) e^x + C D) None
Ans: A -
∫dx/(x√(x² – 1)) =
A) sec⁻¹x + C B) tan⁻¹x + C C) ln|x| + C D) None
Ans: A -
∫(2x + 1)² dx =
A) (2x + 1)³/3 + C B) 4x² + 4x + 1 + C C) (4x³/3) + C D) None
Ans: A -
∫cos²x dx =
A) (x + sin x cos x)/2 + C B) (x/2 + sin 2x/4) + C C) sin x + C D) None
Ans: B -
∫1/√(x² – a²) dx =
A) ln|x + √(x² – a²)| + C B) tan⁻¹(x/a) + C C) sinh⁻¹x + C D) None
Ans: A -
∫x⁴ dx =
A) x⁵/5 + C B) 5x⁴ + C C) x⁴ + C D) None
Ans: A -
∫dx/(√(a² – x²)) =
A) sin⁻¹(x/a) + C B) tan⁻¹(x/a) + C C) cos⁻¹(x/a) + C D) None
Ans: A -
∫(x + 1)/(x² + 2x + 2) dx =
A) ln(x² + 2x + 2) + tan⁻¹(x + 1) + C B) ln|x + 1| + C
C) tan⁻¹(x) + C D) None
Ans: A -
∫(x – 1)/(x² – 2x + 2) dx =
A) ½ ln(x² – 2x + 2) + tan⁻¹(x – 1) + C B) ln x + C
C) tan x + C D) None
Ans: A
🔹 Definite Integration (91–115)
-
∫₀¹ x dx =
A) 1 B) 0.5 C) 1.5 D) 2
Ans: B -
∫₀^π sin x dx =
A) 2 B) 1 C) 0 D) None
Ans: A -
∫₀² (x²) dx =
A) 4 B) 8/3 C) 2 D) 6
Ans: B -
∫₀¹ (3x² + 2x + 1) dx =
A) 3 B) 2 C) 11/6 D) 1
Ans: C -
∫₁^e (1/x) dx =
A) e B) ln e C) 1 D) ln 2
Ans: C -
∫₀^π/2 cos x dx =
A) 0 B) 1 C) 2 D) π
Ans: B -
∫₀^π sin²x dx =
A) π/2 B) π/4 C) 1 D) 2
Ans: A -
∫₀^π |sin x| dx =
A) 1 B) 0 C) 2 D) 4
Ans: C -
∫₀^1 x³ dx =
A) 1/4 B) 1/3 C) 1/2 D) 1
Ans: A -
∫₀^π x sin x dx =
A) 0 B) π C) 2π D) π²
Ans: B -
∫₀^1 (x⁵ – x⁴) dx =
A) 0 B) 1/30 C) 1/6 D) 1/12
Ans: B -
∫₋₁¹ x² dx =
A) 0 B) 1/3 C) 2/3 D) 1
Ans: C -
∫₀^a f(x) dx = ∫₀^a f(a – x) dx is true for:
A) Even functions only B) Odd functions only C) Any function D) Symmetric limits
Ans: C -
∫₀^π sin³x dx =
A) 4/3 B) 0 C) 2 D) 3
Ans: A -
∫₀^π/2 ln(sin x) dx =
A) 0 B) –π ln 2 / 2 C) π/2 D) 1
Ans: B -
∫₀^a f(x) dx = a f(a/2) is true for
A) Constant functions B) Linear functions C) Symmetric functions D) None
Ans: A -
∫₀^1 √x dx =
A) 2/3 B) 1/2 C) 1/3 D) 1
Ans: A -
∫₁^2 1/x dx =
A) ln 2 B) ln x C) 1 D) 2
Ans: A -
∫₀^π x cos x dx =
A) 0 B) π C) –π D) π/2
Ans: A -
∫₀^1 e^x dx =
A) e – 1 B) e C) 1 D) ln e
Ans: A -
∫₋π^π sin x dx =
A) 0 B) 2 C) –2 D) π
Ans: A -
∫₋a^a x² dx =
A) 0 B) 2a³/3 C) a³/3 D) a²
Ans: B -
∫₀^a x(a – x) dx =
A) a³/6 B) a²/2 C) a³/2 D) a³/3
Ans: A -
∫₀^π sin x cos x dx =
A) 0 B) 1 C) π/2 D) π
Ans: A -
∫₀^π/2 sin x dx =
A) 1 B) 0 C) π/2 D) 2
Ans: A
🔹 Area Under Curve (116–130)
-
Area under y = x from x = 0 to 1 is
A) 1 B) 1/2 C) 2 D) 0
Ans: B -
Area between y = x and y = x² from 0 to 1 is
A) 1/6 B) 1/3 C) 1/4 D) 1
Ans: A -
Area under y = |x| from –1 to 1 is
A) 0 B) 1 C) 2 D) None
Ans: C -
Area under y = cos x from 0 to π/2 is
A) 1 B) 0 C) π/2 D) 2
Ans: A -
Area bounded by y = sin x and x-axis from 0 to π is
A) 0 B) 2 C) 1 D) 0
Ans: C -
Area under y = x² from 0 to 2 is
A) 8/3 B) 4/3 C) 2 D) 4
Ans: A -
Area between y = x² and y = 2x from 0 to 2 is
A) 4/3 B) 2 C) 1 D) 8/3
Ans: A -
Area under y = tan x from 0 to π/4 is
A) ln 2 B) 1 C) π/4 D) None
Ans: A -
Area between y = e^x and x-axis from 0 to 1 is
A) e – 1 B) 1 C) e D) ln e
Ans: A -
Area under y = 1/x from 1 to e is
A) 1 B) e – 1 C) ln e D) ln 2
Ans: A -
Area bounded by y = sin x and y = cos x between 0 and π/4 is
A) 0 B) 1/2 C) √2/2 – 1/2 D) None
Ans: C -
Area under y = 3 from x = 0 to 2 is
A) 3 B) 6 C) 1 D) 2
Ans: B -
Area under curve y = 2x + 1 from 0 to 3 is
A) 12 B) 15 C) 18 D) 10
Ans: B -
Area between y = x and y = 2x – x² is
A) 1/6 B) 1/4 C) 1/2 D) None
Ans: A -
Area bounded by y = x² and y = 4x – x² is
A) 8 B) 9 C) 10 D) 6
Ans: A
🔹 Differential Equations (131–150)
-
dy/dx = x implies y =
A) x² B) x²/2 + C C) ln x D) 2x
Ans: B -
dy/dx = ky ⇒ y =
A) e^(kx) B) xk C) kx D) Ce^(kx)
Ans: D -
Solution of dy/dx = y² is
A) –1/y = x + C B) y = e^x C) y = x² D) None
Ans: A -
dy/dx + y = 0 ⇒ y =
A) Ce^(–x) B) e^x C) 1/x D) x²
Ans: A -
If dy/dx = 3x² and y = 1 when x = 0, then y =
A) x³ + 1 B) x³ C) x² + 1 D) None
Ans: A -
dy/dx = x/y is a
A) Linear DE B) Variable separable C) Homogeneous D) Both B and C
Ans: D -
d²y/dx² = 0 implies y is
A) Constant B) Linear C) Quadratic D) Cubic
Ans: B -
d²y/dx² = –y is equation of
A) SHM B) Damped motion C) Growth D) Decay
Ans: A -
General solution of dy/dx = e^x is
A) e^x + C B) ln x + C C) x²/2 D) None
Ans: A -
dy/dx = x/y ⇒ solution is
A) y² = x² + C B) y = x² C) y = ln x D) None
Ans: A -
dy/dx = y tan x ⇒ solution is
A) y = C sec x B) y = C cos x C) y = C sec x D) None
Ans: C -
d²y/dx² = 0 ⇒ general solution is
A) y = Ax + B B) x² C) y = C D) None
Ans: A -
dy/dx = y cot x ⇒ y =
A) C sin x B) C cot x C) C tan x D) None
Ans: A -
dy/dx + y tan x = 0 ⇒ y =
A) C sec x B) C cos x C) C sin x D) None
Ans: B -
dy/dx = sin x ⇒ y =
A) –cos x + C B) cos x + C C) tan x D) None
Ans: A -
dy/dx = 2x + 3, y(0) = 1 ⇒ y =
A) x² + 3x + 1 B) x² + 3x + C C) x + 1 D) None
Ans: A -
d²y/dx² = 4 ⇒ y =
A) 2x² + Cx + D B) x² + C C) 4x + C D) None
Ans: A -
dy/dx = x² + y² ⇒
A) Not linear B) Linear C) Constant D) None
Ans: A -
dy/dx = x + y ⇒ solution uses
A) Integrating factor B) Substitution C) Variable separable D) None
Ans: B -
dy/dx = y/x ⇒ solution is
Ans: A
A) y = Cx B) y = ln x C) y = x + C D) None
0 Comments